Aplikasi Berbasis M-KNN untuk Mendukung Keputusan Perekrutan Pemain yang Sesuai dengan Kebutuhan Tim Sepakbola
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
View Archive InfoField | Value | |
ISSN |
2548-964X |
|
Authentication Code |
dc |
|
Title Statement |
Aplikasi Berbasis M-KNN untuk Mendukung Keputusan Perekrutan Pemain yang Sesuai dengan Kebutuhan Tim Sepakbola |
|
Added Entry - Uncontrolled Name |
Chandra, Deny Stevefanus Mardji, Mardji Indriati, Indriati Fakultas Ilmu Komputer, Universitas Brawijaya Fakultas Ilmu Komputer, Universitas Brawijaya Fakultas Ilmu Komputer, Universitas Brawijaya |
|
Summary, etc. |
Sepakbola adalah masing-masing regu atau kesebelasan berusaha menguasai bola, memasukan bola ke dalam gawang lawan sebanyak mungkin, dan berusaha mematahkan serangan lawan untuk melindungi atau menjaga gawangnya agar tidak kemasukan bola. Dari penjelasan tersebut dapat diketahui bahwa tujuan bermain sepakbola adalah untuk mencetak angka atau gol. Tiap-tiap pemain mempunyai fungsi yang berbeda-beda yaitu penyerang atau pemain depan berfungsi sebagai penyerang, oleh karena itu seorang 3 pemain depan dituntut untuk dapat mencetak gol ke gawang lawan. Kemudian pemain tengah atau gelandang berfungsi sebagai pengumpan bola atau bisa juga gelandang bertugas membantu penyerang untuk memasukkan bola ke gawang. Selain itu, ada juga pemain belakang atau defender yang berfungsi menjaga pertahanan gawang dari serangan para lawan. Akan tetapi selain bertugas sebagai bertahan, pemain belakang atau yang lebih sering disebut bek juga dapat bertugas membantu penyerangan. Oleh karena tiap pemain memiliki fungsi atau tugas masing-masing yang berbeda, tentunya hal tersebut berpengaruh kepada tendangan masing-masing pemain tergantung posisi yang dimiliki. MkNN merupakan pengembangan dari metode k-Nearest Neighbour (kNN). MkNN memberi label kelas pada data pengujian berdasarkan k data pelatihan yang tervalidasi dan bobot dari masing-masing data pelatihan tersebut, bukan hanya berdasarkan jarak terdekat seperti yang dilakukan pada kNN. MkNN memberikan kesempatan yang lebih besar bagi data pelatihan yang memiliki validitas yang tinggi, sehingga klasifikasi tidak terlalu terpengaruh pada data yang kurang stabil atau memiliki validitas yang rendah. Hasil perhitungan MkNN yang dilakukan sistem pendukung keputusan sama dengan hasil perhitungan secara manual. Keakurasian aplikasi sistem pendukung keputusan ini dalam menentukan posisi pemain mendapatkan hasil 90%.
|
|
Publication, Distribution, Etc. |
Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya |
|
Electronic Location and Access |
application/pdf http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1603 |
|
Data Source Entry |
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer; Vol 2 No 6 (2018): Juni 2018 |
|
Language Note |
ind |
|
Terms Governing Use and Reproduction Note |
Hak Cipta (c) 2017 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer |
|